42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
...
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
surfaceTemp = heat;
waterTemp = heat + biome.waterTempDelta;
surfaceHumid = humid;
}
end
local vdsq = lib.math.vdsq
function world.climate.temp(pos) --> irradiance at pos in W
local cl = world.climate.eval(pos)
local radCenters = starlit.region.radiator.store:get_areas_for_pos(pos, false, true)
local irradiance = 0
for _,e in pairs(radCenters) do
local rpos = minetest.string_to_pos(e.data)
local rdef = assert(minetest.registered_nodes[assert(minetest.get_node(rpos)).name])
local rc = rdef._starlit.radiator
................................................................................
power = power * (1 - (dist_sq / ((r_max+1)^2)))
end
power = power * (1 - (obstruct/5))
irradiance = irradiance + power
end
end
end
return irradiance + cl.surfaceTemp
end
world.ecology.biomes.foreach('starlit:biome-gen', {}, function(id, b)
b.def.name = id
minetest.register_biome(b.def)
end)
world.ecology.plants.foreach('starlit:plant-gen', {}, function(id, b)
................................................................................
}
for k,v in pairs(b.decoration) do dec[k] = v end
b.decoration = minetest.register_decoration(dec)
end)
local toward = lib.math.toward
local hfinterval = 1.5
starlit.startJob('starlit:heatflow', hfinterval, function(delta)
-- our base thermal conductivity (κ) is measured in °C/°C/s. say the
-- player is in -30°C weather, and has an internal temperature of
-- 10°C. then:
-- κ = .1°C/C/s (which is apparently 100mHz)
-- Tₚ = 10°C
-- Tₑ = -30°C
................................................................................
-- d = Tₑ − Tₚ = -40°C
-- ΔT = κ×d = -.4°C/s
-- too cold:
-- x = beginning of danger zone
-- κ × (x - Tₚ) = y where y < Tₚ
-- our final change in temperature is computed as tΔC where t is time
local kappa = starlit.constant.heat.thermalConductivity
for name,user in pairs(starlit.activeUsers) do
local tr = user:species().tempRange
local t = starlit.world.climate.temp(user.entity:get_pos())
do -- this bit probably belongs in starlit:bio but we do it here in order
-- to spare ourselves another call into the dark swamp of climate.temp
local urg = 1
local hz = user:tempHazard(t)
local tr = user:species().tempRange.survivable
if hz == 'cold' then
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
...
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
...
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
surfaceTemp = heat;
waterTemp = heat + biome.waterTempDelta;
surfaceHumid = humid;
}
end
local vdsq = lib.math.vdsq
function world.climate.temp(pos, timeshift) --> irradiance at pos in W
local cl = world.climate.eval(pos)
local radCenters = starlit.region.radiator.store:get_areas_for_pos(pos, false, true)
local irradiance = 0
for _,e in pairs(radCenters) do
local rpos = minetest.string_to_pos(e.data)
local rdef = assert(minetest.registered_nodes[assert(minetest.get_node(rpos)).name])
local rc = rdef._starlit.radiator
................................................................................
power = power * (1 - (dist_sq / ((r_max+1)^2)))
end
power = power * (1 - (obstruct/5))
irradiance = irradiance + power
end
end
end
local w = world.climate.weatherAt(pos, timeshift)
return irradiance + cl.surfaceTemp
end
function world.ecology.biomeAt(pos)
return world.ecology.biomes.db[minetest.get_biome_name(minetest.get_biome_data(pos).biome)]
end
minetest.after(0, function()
world.climate.weatherMap.kind = minetest.get_perlin {
seed = 0x925afe;
octaves = 2;
spread = vector.new(256,256,120);
};
world.climate.weatherMap.severity = minetest.get_perlin {
seed = 0x39de1d;
octaves = 1;
spread = vector.new(256,256,60);
};
end)
function world.climate.weatherAt(pos, timeshift)
timeshift = timeshift or 0
local wv = world.climate.weatherMap.kind:get_3d(vector.new(pos.x, pos.z, minetest.get_gametime() + timeshift))
local sev = world.climate.weatherMap.severity:get_3d(vector.new(pos.x, pos.z, minetest.get_gametime() + timeshift))
local b = world.ecology.biomeAt(pos)
local w = 'starlit:clear'
for i,v in ipairs(b.weather) do
if wv < v[1] then
w = v[2]
break
end
end
local mods = {
cloudCover = 0;
rain = 0; -- affects plant growth
snow = 0; -- spawns snow layer
fog = 0;
temp = 0;
hum = 0;
rad = 0;
}
return world.climate.weather.db[w], sev
end
-- weather manages particle systems, and provides modifiers for
-- temp, cloud cover, received precipitation, and fog
world.climate.weather.link('starlit:clear', {
name = 'Clear';
})
world.climate.weather.link('starlit:cloudy', {
name = 'Cloudy';
mod = function(m, temp, hum, sev)
m.cloudCover = math.max(m.cloudCover, sev)
end;
})
world.climate.weather.link('starlit:precip', {
name = function(temp, hum, sev)
if temp < 0 then return 'Snow' else return 'Rain' end
end;
mod = function(m, temp, hum, sev)
m.cloudCover = math.max(m.cloudCover, sev)
if temp < 0 then
m.snow = math.max(m.snow, sev/2)
else
m.rain = math.max(m.rain, sev/2)
end
end;
})
world.climate.weather.link('starlit:storm', {
name = function(temp, hum, sev)
if temp < 0 then
if sev > .5
then return 'Blizzard'
else return 'Snowstorm'
end
else
if sev > .5
then return 'Monsoon'
else return 'Rainstorm'
end
end
end;
mod = function(m, temp, hum, sev)
m.cloudCover = math.max(m.cloudCover, sev)
if temp < 0 then
m.snow = math.max(m.snow, sev/2 + .5)
else
m.rain = math.max(m.rain, sev/2 + .5)
end
end;
})
world.climate.weather.link('starlit:tstorm', {
name = 'Thunderstorm';
danger = 1;
mod = function(m, temp, hum, sev)
m.cloudCover = math.max(m.cloudCover, sev)
m.danger = (sev>.5) and 2 or 1
end;
})
world.climate.weather.link('starlit:sstorm', {
name = 'Solar Storm';
danger = 2;
})
world.climate.weather.link('starlit:meteorShower', {
name = 'Meteor Shower';
danger = 2;
})
world.ecology.biomes.foreach('starlit:biome-gen', {}, function(id, b)
b.def.name = id
minetest.register_biome(b.def)
end)
world.ecology.plants.foreach('starlit:plant-gen', {}, function(id, b)
................................................................................
}
for k,v in pairs(b.decoration) do dec[k] = v end
b.decoration = minetest.register_decoration(dec)
end)
local toward = lib.math.toward
local hfinterval = 1.5
starlit.startJob('starlit:temps', hfinterval, function(delta)
-- our base thermal conductivity (κ) is measured in °C/°C/s. say the
-- player is in -30°C weather, and has an internal temperature of
-- 10°C. then:
-- κ = .1°C/C/s (which is apparently 100mHz)
-- Tₚ = 10°C
-- Tₑ = -30°C
................................................................................
-- d = Tₑ − Tₚ = -40°C
-- ΔT = κ×d = -.4°C/s
-- too cold:
-- x = beginning of danger zone
-- κ × (x - Tₚ) = y where y < Tₚ
-- our final change in temperature is computed as tΔC where t is time
local kappa = starlit.constant.heat.thermalConductivity
local now = minetest.get_gametime()
for name,user in pairs(starlit.activeUsers) do
local tr = user:species().tempRange
local t = starlit.world.climate.temp(user.entity:get_pos())
local weather,wsev = starlit.world.climate.weatherAt(user.entity:get_pos())
local wfac
if user.env.weather == nil
then wfac = 1
else wfac = (now - user.env.weather.when) / 10
end
if user.env.weather == nil or now - user.env.weather.when >= 10 then
user.env.weather = {when = now, what = weather}
end
do -- this bit probably belongs in starlit:bio but we do it here in order
-- to spare ourselves another call into the dark swamp of climate.temp
local urg = 1
local hz = user:tempHazard(t)
local tr = user:species().tempRange.survivable
if hz == 'cold' then
|